Patch and Whole-Cell Recording
ثبت نشده
چکیده
Last time we considered at some length the sources of random noise due to the thermal motion of ions and electrons. Now we turn to the practical matter of dealing with the pickup of nonrandom electrical signals, such as interference from the 60 Hz power lines or from a computer monitor. There are two main principles to consider: electrostatic pickup through unshielded surfaces, and magnetic pickup through ground loops.
منابع مشابه
P 18: Alterations of Electrophysiological Activity of Cerebellar Pukinje Cells of Rats Under Harmaline Toxicity
Introduction: Beta-carboline alkaloids of P. harmala are shown to have immune-modulatory effects in several studies. Extracts of this plant have significant anti-inflammatory effect via the inhibition of some inflammatory mediators including PGE2 and TNF-α. In postmortem studies, structural alterations to the cerebellum have been recognized, including Purkinje cell loss being re...
متن کاملP 17: Electrophysiological Effects of Cannabinoid Receptor Antagonist AM251 on Harmaline Toxicity in Rat’s Cerebellar Vermis Slices
Introduction: The Cannabinoid receptors (CBR) densities are high within the cerebellum. Cannabinoid receptors manipulations have been reported to cause altering the cerebellar functions. harmaline have immune-modulatory effects in several studies. i.e., significant anti-inflammatory effect via the inhibition of prostaglandin E2 (PGE2) and tumor necrosis factor alpha (TNF-α). Endocannabino...
متن کاملCombining pharmacology and whole-cell patch recording from CNS neurons, in vivo.
Whole-cell patch neurophysiology and pharmacological manipulations have provided unprecedented insight into the functions of central neurons, but their combined use has been largely restricted to in vitro preparations. We describe a method for performing whole-cell patch recording and focal application of pharmacological agents in vivo. A key feature of this technique involves iontophoresis of ...
متن کاملWhole cell patch clamp recording performed on a planar glass chip.
The state of the art technology for the study of ion channels is the patch clamp technique. Ion channels mediate electrical current flow, have crucial roles in cellular physiology, and are important drug targets. The most popular (whole cell) variant of the technique detects the ensemble current over the entire cell membrane. Patch clamping is still a laborious process, requiring a skilled expe...
متن کاملThe interpretation of current-clamp recordings in the cell-attached patch-clamp configuration.
In these experiments we have investigated the feasibility and accuracy of recording steady-state and dynamic changes in transmembrane potential noninvasively across an intact cell-attached patch using the current-clamp mode of a conventional patch-clamp amplifier. Using an equivalent circuit mimicking simultaneous whole-cell voltage-clamp and cell-attached current-clamp recordings we have defin...
متن کاملRobotic Automation of In Vivo Two-Photon Targeted Whole-Cell Patch-Clamp Electrophysiology
Whole-cell patch-clamp electrophysiological recording is a powerful technique for studying cellular function. While in vivo patch-clamp recording has recently benefited from automation, it is normally performed "blind," meaning that throughput for sampling some genetically or morphologically defined cell types is unacceptably low. One solution to this problem is to use two-photon microscopy to ...
متن کامل